人们经常利用在线媒体(例如Facebook,reddit)作为表达心理困扰并寻求支持的平台。最先进的NLP技术表现出强大的潜力,可以自动从文本中检测到心理健康问题。研究表明,心理健康问题反映在人类选择中所表明的情绪(例如悲伤)中。因此,我们开发了一种新颖的情绪注释的心理健康语料库(Emoment),由2802个Facebook帖子(14845个句子)组成,该帖子从两个南亚国家(斯里兰卡和印度)提取。三名临床心理学研究生参与了将这些职位注释分为八​​类,包括“精神疾病”(例如抑郁症)和情绪(例如,“悲伤”,“愤怒”)。 Emoment语料库达到了98.3%的“非常好”的跨通道协议(即有两个或更多协议),而Fleiss的Kappa为0.82。我们基于罗伯塔的模型的F1得分为0.76,第一个任务的宏观平均F1得分为0.77(即,从职位预测心理健康状况)和第二任务(即相关帖子与定义的类别的关联程度在我们的分类法中)。
translated by 谷歌翻译
每天创建数以万计的恶意域。这些恶意域托管在各种网络基础架构上。传统上,攻击者利用子弹证明托管服务(例如,Cyber​​ Bunker)来利用相对宽度的策略,就他们托管的内容。但是,这些IP范围越来越受阻,或者通过执法进行服务。因此,攻击者正在朝着在这些托管提供商的雷达下使用常规托管提供商的IP。准确了解用于托管恶意域的IP类型存在几种实际优点。如果IP是专用IP(即它被租用到单个实体),则可以将IP列入IP以阻止托管在那些IP上的域作为窗口,作为识别其他恶意域托管同一IP的方法。如果IP是共享托管IP,托管提供程序可能会采取措施清理此类域并对其用户保持良好的声誉。
translated by 谷歌翻译
分布式的小型太阳能光伏(PV)系统正在以快速增加的速度安装。这可能会对分销网络和能源市场产生重大影响。结果,在不同时间分辨率和视野中,非常需要改善对这些系统发电的预测。但是,预测模型的性能取决于分辨率和地平线。在这种情况下,将多个模型的预测结合到单个预测中的预测组合(合奏)可能是鲁棒的。因此,在本文中,我们提供了对五个最先进的预测模型的性能以及在多个分辨率和视野下的现有预测组合的比较和见解。我们提出了一种基于粒子群优化(PSO)的预测组合方法,该方法将通过加权单个模型产生的预测来使预报掌握能够为手头的任务产生准确的预测。此外,我们将提出的组合方法的性能与现有的预测组合方法进行了比较。使用现实世界中的PV电源数据集进行了全面的评估,该数据集在美国三个位置的25个房屋中测得。在四种不同的分辨率和四个不同视野之间的结果表明,基于PSO的预测组合方法的表现优于使用任何单独的预测模型和其他预测组合的使用,而平均平均绝对规模误差降低了3.81%,而最佳性能则最佳性能单个个人模型。我们的方法使太阳预报员能够为其应用产生准确的预测,而不管预测分辨率或视野如何。
translated by 谷歌翻译
Advances in computer vision and machine learning techniques have led to significant development in 2D and 3D human pose estimation from RGB cameras, LiDAR, and radars. However, human pose estimation from images is adversely affected by occlusion and lighting, which are common in many scenarios of interest. Radar and LiDAR technologies, on the other hand, need specialized hardware that is expensive and power-intensive. Furthermore, placing these sensors in non-public areas raises significant privacy concerns. To address these limitations, recent research has explored the use of WiFi antennas (1D sensors) for body segmentation and key-point body detection. This paper further expands on the use of the WiFi signal in combination with deep learning architectures, commonly used in computer vision, to estimate dense human pose correspondence. We developed a deep neural network that maps the phase and amplitude of WiFi signals to UV coordinates within 24 human regions. The results of the study reveal that our model can estimate the dense pose of multiple subjects, with comparable performance to image-based approaches, by utilizing WiFi signals as the only input. This paves the way for low-cost, broadly accessible, and privacy-preserving algorithms for human sensing.
translated by 谷歌翻译
Due to the environmental impacts caused by the construction industry, repurposing existing buildings and making them more energy-efficient has become a high-priority issue. However, a legitimate concern of land developers is associated with the buildings' state of conservation. For that reason, infrared thermography has been used as a powerful tool to characterize these buildings' state of conservation by detecting pathologies, such as cracks and humidity. Thermal cameras detect the radiation emitted by any material and translate it into temperature-color-coded images. Abnormal temperature changes may indicate the presence of pathologies, however, reading thermal images might not be quite simple. This research project aims to combine infrared thermography and machine learning (ML) to help stakeholders determine the viability of reusing existing buildings by identifying their pathologies and defects more efficiently and accurately. In this particular phase of this research project, we've used an image classification machine learning model of Convolutional Neural Networks (DCNN) to differentiate three levels of cracks in one particular building. The model's accuracy was compared between the MSX and thermal images acquired from two distinct thermal cameras and fused images (formed through multisource information) to test the influence of the input data and network on the detection results.
translated by 谷歌翻译
The advances in Artificial Intelligence are creating new opportunities to improve lives of people around the world, from business to healthcare, from lifestyle to education. For example, some systems profile the users using their demographic and behavioral characteristics to make certain domain-specific predictions. Often, such predictions impact the life of the user directly or indirectly (e.g., loan disbursement, determining insurance coverage, shortlisting applications, etc.). As a result, the concerns over such AI-enabled systems are also increasing. To address these concerns, such systems are mandated to be responsible i.e., transparent, fair, and explainable to developers and end-users. In this paper, we present ComplAI, a unique framework to enable, observe, analyze and quantify explainability, robustness, performance, fairness, and model behavior in drift scenarios, and to provide a single Trust Factor that evaluates different supervised Machine Learning models not just from their ability to make correct predictions but from overall responsibility perspective. The framework helps users to (a) connect their models and enable explanations, (b) assess and visualize different aspects of the model, such as robustness, drift susceptibility, and fairness, and (c) compare different models (from different model families or obtained through different hyperparameter settings) from an overall perspective thereby facilitating actionable recourse for improvement of the models. It is model agnostic and works with different supervised machine learning scenarios (i.e., Binary Classification, Multi-class Classification, and Regression) and frameworks. It can be seamlessly integrated with any ML life-cycle framework. Thus, this already deployed framework aims to unify critical aspects of Responsible AI systems for regulating the development process of such real systems.
translated by 谷歌翻译
Model calibration, which is concerned with how frequently the model predicts correctly, not only plays a vital part in statistical model design, but also has substantial practical applications, such as optimal decision-making in the real world. However, it has been discovered that modern deep neural networks are generally poorly calibrated due to the overestimation (or underestimation) of predictive confidence, which is closely related to overfitting. In this paper, we propose Annealing Double-Head, a simple-to-implement but highly effective architecture for calibrating the DNN during training. To be precise, we construct an additional calibration head-a shallow neural network that typically has one latent layer-on top of the last latent layer in the normal model to map the logits to the aligned confidence. Furthermore, a simple Annealing technique that dynamically scales the logits by calibration head in training procedure is developed to improve its performance. Under both the in-distribution and distributional shift circumstances, we exhaustively evaluate our Annealing Double-Head architecture on multiple pairs of contemporary DNN architectures and vision and speech datasets. We demonstrate that our method achieves state-of-the-art model calibration performance without post-processing while simultaneously providing comparable predictive accuracy in comparison to other recently proposed calibration methods on a range of learning tasks.
translated by 谷歌翻译
Dataset scaling, also known as normalization, is an essential preprocessing step in a machine learning pipeline. It is aimed at adjusting attributes scales in a way that they all vary within the same range. This transformation is known to improve the performance of classification models, but there are several scaling techniques to choose from, and this choice is not generally done carefully. In this paper, we execute a broad experiment comparing the impact of 5 scaling techniques on the performances of 20 classification algorithms among monolithic and ensemble models, applying them to 82 publicly available datasets with varying imbalance ratios. Results show that the choice of scaling technique matters for classification performance, and the performance difference between the best and the worst scaling technique is relevant and statistically significant in most cases. They also indicate that choosing an inadequate technique can be more detrimental to classification performance than not scaling the data at all. We also show how the performance variation of an ensemble model, considering different scaling techniques, tends to be dictated by that of its base model. Finally, we discuss the relationship between a model's sensitivity to the choice of scaling technique and its performance and provide insights into its applicability on different model deployment scenarios. Full results and source code for the experiments in this paper are available in a GitHub repository.\footnote{https://github.com/amorimlb/scaling\_matters}
translated by 谷歌翻译
Over the past decade, neural networks have been successful at making predictions from biological sequences, especially in the context of regulatory genomics. As in other fields of deep learning, tools have been devised to extract features such as sequence motifs that can explain the predictions made by a trained network. Here we intend to go beyond explainable machine learning and introduce SEISM, a selective inference procedure to test the association between these extracted features and the predicted phenotype. In particular, we discuss how training a one-layer convolutional network is formally equivalent to selecting motifs maximizing some association score. We adapt existing sampling-based selective inference procedures by quantizing this selection over an infinite set to a large but finite grid. Finally, we show that sampling under a specific choice of parameters is sufficient to characterize the composite null hypothesis typically used for selective inference-a result that goes well beyond our particular framework. We illustrate the behavior of our method in terms of calibration, power and speed and discuss its power/speed trade-off with a simpler data-split strategy. SEISM paves the way to an easier analysis of neural networks used in regulatory genomics, and to more powerful methods for genome wide association studies (GWAS).
translated by 谷歌翻译
The Elo algorithm, due to its simplicity, is widely used for rating in sports competitions as well as in other applications where the rating/ranking is a useful tool for predicting future results. However, despite its widespread use, a detailed understanding of the convergence properties of the Elo algorithm is still lacking. Aiming to fill this gap, this paper presents a comprehensive (stochastic) analysis of the Elo algorithm, considering round-robin (one-on-one) competitions. Specifically, analytical expressions are derived characterizing the behavior/evolution of the skills and of important performance metrics. Then, taking into account the relationship between the behavior of the algorithm and the step-size value, which is a hyperparameter that can be controlled, some design guidelines as well as discussions about the performance of the algorithm are provided. To illustrate the applicability of the theoretical findings, experimental results are shown, corroborating the very good match between analytical predictions and those obtained from the algorithm using real-world data (from the Italian SuperLega, Volleyball League).
translated by 谷歌翻译